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SECOND-SOUND PHENOMENA IN INVISCID, THERMALLY

RELAXING GASES

Pedro M. Jordan

Acoustics Div., U.S. Naval Research Laboratory
Stennis Space Ctr., MS 39529, USA

Abstract. We consider the propagation of acoustic and thermal waves in a

class of inviscid, thermally relaxing gases wherein the flow of heat is described
by the Maxwell–Cattaneo law, i.e., in Cattaneo–Christov gases. After first

considering the start-up piston problem under the linear theory, we then inves-

tigate traveling wave phenomena under the weakly-nonlinear approximation.
In particular, a shock analysis is carried out, comparisons with predictions

from classical gases dynamics theory are performed, and critical values of the

parameters are derived. Special case results are also presented and connections
to other fields are noted.

1. Introduction. Setting aside the fact that it has been shown to fail1 in situations
involving low temperature and/or high heat flux conditions, the constitutive relation
known as Fourier’s law, which for present purposes may be expressed as

q = −K∇ϑ, (1)

where ϑ(> 0), q, and K(> 0) denote the absolute temperature, heat flux vector,
and thermal conductivity, respectively, suffers from a fundamental drawback: What
has come to be known as the paradox of heat conduction (PHC) [17, 36]. This refers
to the fact that implicit in the use of Eq. (1) is the assumption that, in a continuous
medium, a thermal disturbance at one point will be felt instantly, but unequally, at
all others, however distant. Such behavior is, of course, physically unrealistic and
constitutes a violation of the well-established principle of classical mechanics known
as causality [47].

Enter now the Maxwell–Cattaneo (MC) flux law, which in the case of a rigid,
isotropic solid at rest assumes its simplest form

τqt + q = −K∇ϑ, (2)

where τ(> 0) has been termed the intrinsic relaxation time of the heat flux [13].
Under this constitutive relation, the flow of heat within a continuous medium does
not occur instantaneously; rather, it does so over time via the propagation of ther-
mal waves, a phenomenon known as second-sound [17, 24, 36, 45]. The basis of
Eq. (2) can be traced back to Maxwell’s work on the kinetic theory of gases, specif-
ically, his seminal 1867 paper entitled “On the dynamical theory of gases” [30].
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However, it was not until the 1950s, following the detection of second-sound in
He II by Peshkov [37] and the formulation of a simple hyperbolic theory to describe
heat conduction in gases by Cattaneo [7], that widespread interest in thermal wave
phenomena began to develop; see, e.g., Refs. [8, 45, 50] and those therein.

As the title indicates, this communication is devoted to the study of second-sound
in gases. Unlike those carried out by Maxwell and Cattaneo, however, the present
investigation is performed under the framework of continuum mechanics, and as
such can be regarded as complementing the works of Carrassi and Morro [5], Lindsay
and Straughan [28], and Straughan [44] on second-sound in fluids, as well as those of
Moran and Shen [32] and Lesser and Seebass [27] from the field of classical acoustics.
Moreover, while Grad [20] and others2 have derived sophisticated generalizations of
Eq. (2) to describe the flow of heat in virtually all forms of continuous media, here,
following Straughan [44] and Tibullo and Zampoli [48], we take as our flux relation
the generalization of the MC law put forth by Christov [10], namely,

τ [qt + (u · ∇)q− (q · ∇)u + (∇ · u)q] + q = −K∇ϑ, (3)

which in terms of generality will prove more than adequate for the analysis carried
out below. Here, u denotes the velocity vector (see section 2) and we observe
that, while not relevant to the present study, Eq. (3) possesses the property of
frame-indifference, which Christov achieved via the use of a Lie–Oldroyd derivative,
instead of ∂/∂t, to describe the time-rate-of-change of q; see also Refs. [26, 44].

Our primary aim here is to investigate the propagation of acoustic and second-
sound waves in what Straughan [44] has termed a “Cattaneo–Christov” gas, i.e., an
inviscid perfect gas that, along with the ability to conduct heat, exhibits thermal
relaxation described by Eq. (3). In particular, our focus shall be on shock and trav-
eling wave phenomena, in one-dimension (1D), under both the linear and weakly-
nonlinear formulations of the system of governing equations. The present investi-
gation, therefore, seeks to examine phenomena not considered by Straughan [44],
whose focus was limited to acceleration waves, nor by Tibullo and Zampoli [48],
whose uniqueness result was based on the incompressibility assumption.

To this end, the exposition contained herein is organized as follows. In section 2,
the governing equations and constitutive relations are developed. Next, in section 3,
shocks admitted under the linear theory are examined in the context of a classic
signaling problem from acoustics. Then, in section 4, traveling wave and shock
phenomena are analyzed under the weakly-nonlinear approximation. And finally,
in section 5, final remarks are made and possible extensions of the present study
are suggested.

Remark 1. While neglecting viscosity but not heat conduction is, of course, a
theoretical idealization [41, p. 179], particularly in the case of gases, Straughan’s [44]
Cattaneo–Christov model possesses two features that make it highly desirable vis-
à-vis the present study; it is (strictly) hyperbolic, thus ensuring the requirements
of causality are satisfied [40, p. 5], and it allows the effects of thermal relaxation to
be studied without obfuscation from those of viscosity.

2. Balance laws and constitutive assumptions. Consider a compressible in-
viscid gas, wherein we assume the flow of heat is described by Eq. (3) with τ(= τ0)

2See, in particular, the contributions of Morro [33], Müller [35], and Ruggeri [39]; see also
Refs. [24, 36, 45] and those therein.
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and K(= K0) both constant, that obeys the equation of state [29, Eq. (1.1)]

℘ = ℘0(1 + s)γ exp[(η − η0)/cv]. (4)

Equation (4), it should be noted, is derived from the thermodynamic axiom

ϑ dη = cv dϑ− ℘%−2d%, (5)

known as the Gibbs equation [46], with aid of the perfect gas law, namely, ℘ =
cv(γ − 1)%ϑ, which we observe can also be expressed as

℘ = ℘0(1 + s)(1 + θ). (6)

Here, ℘(> 0) is the thermodynamic pressure; η denotes the specific entropy; s =
(% − %0)/%0 is known as the condensation, where %(> 0) is the mass density; θ =
(ϑ − ϑ0)/ϑ0; the exponent γ = cp/cv is known as the adiabatic index, where the
constants cp > cv > 0 denote the specific heats at constant pressure and volume,
respectively, and 1 < γ ≤ 5/3; and ℘0, %0, ϑ0, and η0 are constants that denote the
equilibrium state values of the corresponding thermodynamic variables, where by
equilibrium state we mean the unperturbed state characterized by u = 0, ℘ = ℘0,
% = %0, ϑ = ϑ0, and η = η0.

In the case of such a gas, the continuity, momentum, and entropy equations can
be expressed as

ṡ+ (∇ · u)(1 + s) = 0, (7)

%0(1 + s)[ut + 1
2∇|u|

2 − u× (∇× u)] = −∇℘, (8)

%0ϑ0(1 + s)(1 + θ)η̇ = −∇ · q, (9)

where the absence of both external body forces and internal heat sources has been
assumed and a superposed dot represents the material derivative.

Henceforth restricting our attention to plane wave propagation along the x-axis,
it follows that u = (u(x, t), 0, 0) and q = (q(x, t), 0, 0), while ℘, %, ϑ, and η all
become functions of x and t only. As a result, Eqs. (7)–(9) and (3) are reduced to

st + usx + (1 + s)ux = 0, (10)

%0(1 + s)(ut + uux) = −℘x, (11)

%0ϑ0(1 + s)(1 + θ)(ηt + uηx) = −qx, (12)

q + τ0(qt + uqx) = −K0ϑ0θx, (13)

respectively.
In concluding this section, we call attention to the fact that η can be eliminated

from Eq. (12) using Eq. (5); the former can thus be recast, after eliminating ℘ via
the perfect gas law, as

cv%0ϑ0[(1 + s)(θt + uθx)− (γ − 1)(1 + θ)(st + usx)] = −qx, (14)

a form of the internal energy equation which we shall make use of in the next section.
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3. Linear theory: The start-up piston problem. In this section we consider
a semi-infinite pipe, the central axis of which coincides with the +x-axis, that is
filled with an inviscid perfect gas, within which the flow of heat is described by the
MC law. Adopting the flow geometry of Ref. [32], i.e., planar propagation along
the +x-axis, and linearizing3, Eq. (10), (11), (14), and (6) simplify to

st = −ux, %0ut = −℘x, cv%0ϑ0[θt− (γ−1)st] = −qx, ℘ = ℘0(1 + s+ θ), (15)

respectively, while Eq. (13) assumes the usual form of the MC law, namely,

q + τ0qt = −K0ϑ0θx. (16)

Eliminating ℘ between Eqs. (15)2,4 and q between Eqs. (15)3 and (16), the momen-
tum and energy equations become

ut = −b2(sx + θx), (1 + τ0∂t)[θt − (γ − 1)st] = γκθxx, (17)

where b =
√
℘0/%0 is known as the isothermal sound speed and κ = K0/(%0cp)

denotes the thermal diffusivity. Now using Eq. (15)1 to eliminate s from both
Eqs. (17)1,2, our system assumes it final form

utt − b2uxx = −b2θtx, θt + τ0θtt − γκθxx = −(γ − 1)(1 + τ0∂t)ux. (18)

As did Moran and Shen [32], we assume the following: (i) initially, the gas is in
its equilibrium state; (ii) at time t = 0+ the piston begins advancing to the right,
from the plane x = 0, with constant speed, which we denote here by u0(> 0); and
(iii), the face of the piston is thermally insulated. Mathematically, these physical
assumptions translate into the following boundary and initial conditions:

u(0, t) = u0H(t), u(∞, t) = 0, θx(0, t) = 0, θ(∞, t) = 0 (t > 0); (19)

u(x, 0) = 0, ut(x, 0) = 0, θ(x, 0) = 0, θt(x, 0) = 0 (x > 0), (20)

respectively, where H(·) denotes the Heaviside unit step function.
Applying L[ · ], the Laplace transform [6, 18] with respect to t, to System (18)

and then making use of the initial conditions (IC)s yields, after simplifying, the
system of subsidiary equations

b2ūxx − α2ū = b2αθ̄x, γκθ̄xx − (α+ τ0α
2)θ̄ = (γ − 1)(1 + τ0α)ūx. (21)

Here, α denotes the Laplace transform parameter; a bar over a quantity denotes the
image of that quantity in the Laplace transform domain, e.g., θ̄(x, α) := L[θ(x, t)];
and we note for future reference that

αs̄ = −ūx, ℘̄ = ℘0(s̄+ θ̄ + 1/α), (1 + τ0α)q̄ = −K0ϑ0θ̄x, (22)

where q(x, 0) = 0 was assumed4 in deriving Eq. (22)3.
Solving System (21) subject to the transformed set of boundary conditions, i.e.,

ū(0, α) = u0/α, ū(∞, α) = 0, θ̄x(0, α) = 0, θ̄(∞, α) = 0, (23)

it is readily established that

θ̄(x, α) = − u0(γ − 1)(α+ τ0α
2)

κc20[m2
2(α)−m2

1(α)]

{
exp[−m2(α)x]

m2(α)
− exp[−m1(α)x]

m1(α)

}
, (24)

3It should be noted that Carrassi and Morro [5] also derive a linearized system of flow equations
based on the MC law.

4From the physical standpoint, imposing q(x, 0) = 0 is obvious; mathematically, however,
θt(x, 0) = 0, the corresponding temperature IC (see Eq. (20)4), implies only that q(x, 0) ≡ const.
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ū(x, α) =
u0γα

c20

{
exp[−m2(α)x]− exp[−m1(α)x]

m2
2(α)−m2

1(α)

}
− u0(α2 + τ0α

3)

κc20[m2
2(α)−m2

1(α)]

{
exp[−m2(α)x]

m2
2(α)

− exp[−m1(α)x]

m2
1(α)

}
, (25)

where

m1,2(α) =

√
α

2κ

×
√

1 + (τ0 + γκc−2
0 )α±

√
[1 + (τ0 + γκc−2

0 )α]2 − 4κc−2
0 (α+ τ0α2) . (26)

From the above expressions for θ̄ and ū, the barred version of each of the remaining
field variables can be determined via Eqs. (22); e.g., from Eq. (22)3 we get

q̄(x, α) = − u0K0ϑ0(γ − 1)α

κc20

{
exp[−m2(α)x]− exp[−m1(α)x]

m2
2(α)−m2

1(α)

}
. (27)

3.1. Shock amplitude expressions: Derivation. We begin by expanding the
right-hand side of Eq. (24) for large-α, the result of which we write as

θ̄(x, α) = exp(−σ2x)

[
A2

α
+O(α−2)

]
exp

[
− αx

v2

(
1 +O(α−2)

)]
+ exp(−σ1x)

[
A1

α
+O(α−2)

]
exp

[
− αx

v1

(
1 +O(α−2)

)]
. (28)

Here, and throughout this subsection, τ0 > 0 is assumed;

A1 = − u0c0τ0(γ − 1)
√

2κ√
Π(τ0)

[
γκ+ c20τ0 +

√
Π(τ0)

] , (29)

v1 = c0

√
2κ

γκ+ c20τ0 +
√

Π(τ0)
, (30)

σ1 =
c0

2
√

2κ

 c20τ0 − κ(2− γ) +
√

Π(τ0)√
Π(τ0)

[
γκ+ c20τ0 +

√
Π(τ0)

]
; (31)

A2 =
u0c0τ0(γ − 1)

√
2κ√

Π(τ0)
[
γκ+ c20τ0 −

√
Π(τ0)

] , (32)

v2 =

√
γκ+ c20τ0 +

√
Π(τ0)

2τ0
, (33)

σ2 =
c0

2
√

2κ

 κ(2− γ)− c20τ0 +
√

Π(τ0)√
Π(τ0)

[
γκ+ c20τ0 −

√
Π(τ0)

]
; (34)

and we have set Π(τ0) := (γκ)2 − 2κc20(2 − γ)τ0 + c40τ
2
0 for convenience, where we

observe that Π(τ0) > 0 since γ > 1.
On applying the theorem of Boley and Hetnarski [2, § 4] to Eq. (28), it is a

straightforward matter to show that the θ vs. x solution profile admits two jumps
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and, moreover, to determine the amplitudes, locations, and speeds of said disconti-
nuities. Here, as in Ref. [2], we define the amplitude of the jump discontinuity5 in
a function F = F(x, t) across a wavefront x = Σ(t) as

[[F]] := F− − F+, (35)

where F∓ := limx→Σ(t)∓ F(x, t) are assumed to exist, and where a “+” superscript
corresponds to the region into which Σ is advancing while a “−” superscript corre-
sponds to the region behind Σ.

Introducing now the Rankine–Hugoniot conditions [16, 36] for our system of
equations

[[u]] = v1,2[[s]], [[℘]] = %0v1,2[[u]], [[u]] =
b2v1,2[[θ]]

v2
1,2 − b2

, [[q]] =
K0ϑ0[[θ]]

τ0v1,2
, (36)

and noting that Eq. (15)3 implies [[℘]] = ℘0[[s]] + ℘0[[θ]], we are able to express the
jumps in the remaining field variables in terms of [[θ]]. Omitting the details, the
following shock amplitude expressions are readily derived.

Across Σ1(t) = v1t:

[[θ]] = A1 exp(−σ1x), [[u]] =

(
b2v1A1

v2
1 − b2

)
exp(−σ1x),

[[q]] =

(
K0ϑ0A1

τ0v1

)
exp(−σ1x),

[[s]] =

(
b2A1

v2
1 − b2

)
exp(−σ1x), [[℘]] = ℘0

(
v2

1A1

v2
1 − b2

)
exp(−σ1x). (37)

Across Σ2(t) = v2t:

[[θ]] = A2 exp(−σ2x), [[u]] =

(
b2v2A2

v2
2 − b2

)
exp(−σ2x),

[[q]] =

(
K0ϑ0A2

τ0v2

)
exp(−σ2x),

[[s]] =

(
b2A2

v2
2 − b2

)
exp(−σ2x), [[℘]] = ℘0

(
v2

2A2

v2
2 − b2

)
exp(−σ2x). (38)

Here, we observe that

0 < v1 < b < c0 < v2 <∞ (τ0 > 0), (39)

i.e., v1,2 6= b since τ0 > 0 has been assumed, where for clarity we note that

lim
τ0→0

vr =

{
b, r = 1,

∞, r = 2,
lim
τ0→∞

vr =

{
0, r = 1,

c0, r = 2.
(40)

These wave speed results make clear the fact that v1,2 are the acoustic (i.e., mechan-
ical) and thermal (i.e., second-sound) wave speeds, respectively, where the blow-up
of the latter in the limit τ0 → 0 highlights the PHC.

In closing this subsection, we find it noteworthy that v1,2 admit the following
small-τ0 approximations:

v1 ≈ b
[
1− b2(γ − 1)τ0

2γκ

]
, v2 ≈

√
γκ

τ0

[
1 +

b2(γ − 1)τ0
2γκ

]
(τ0 � κ/b2). (41)

5It should be noted that the authors of Ref. [2] denote (what is written here as) [[F]] using the

notation SF, which is read “the saltus of F”.
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Unfortunately, however, neither is valid for air under normal conditions (i.e., 1 atm
and 300 K), for which, based on Ref. [19, Eq. (18b)], τ0 ≈ 773 picosec.

3.2. Numerical results. In Figure 1 we have plotted Q vs. x, where we have set
Q := κq/(K0ϑ0u0) for convenience. The profiles shown were computed for the case
of air, under normal conditions, using Tzou’s Riemann sum inversion formula [49,
§ 2.5.1], namely,

F(x, t) ≈ e4.7

t

[
1
2F(x, 4.7/t) + Re

(
N∑
n=1

(−1)n F(x, (4.7 + inπ) /t)

)]
(t > 0), (42)

to numerically invert Eq. (27). Here, N(� 1) is an integer and Re( · ) denotes the
real part of a complex quantity.

From Figure 1 it is clear that the MC case exhibits two shock fronts, x = Σ1,2,
while the Fourier case has only one, the speed of which, b, lies between v1 < v2.
More interesting, however, is the following: (a) the MC-based Q profile is actually
increasing on the interval between the two shock fronts; (b) the maximum value of
the Fourier-based case exceeds that of its MC-based counterpart; and (c) the flux,
in both cases, points away from the acoustic shock-front. Figure 1 also illustrates
the highly transient nature of thermal wave phenomena in the present problem.

Remark 2. Under the scalings U 7→ u/u0, Θ 7→ θ(b/u0), Q = q/(u0%0cv), X 7→
x(γκ/b)−1, and T 7→ t(γκ/b2)−1, the inverse of the τ0 := 0 special case of Q can
be read directly from that of σ̄ in Ref. [23] (i.e., Ref. [23, Eq. (9)]), where we
observe that the quantity (γ−1) here plays the role of ε, the thermoelastic coupling
constant, in Ref. [23].

Figure 1. Q vs. x profile at time t = 2.0 nanosec, generated using

Eq. (42) with N = 20000, for air at 1 atm and 300 K, where γ = 1.4,

κ ≈ 2.22 × 10−5 m2/sec [38], b ≈ 293.4 m/sec, and c0 ≈ 347.2 m/sec;

broken: τ0 := 0 (Fourier’s law); solid: τ0 ≈ 773 picosec (MC law).
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4. Weakly-nonlinear theory. While they are exact, the equations of our gov-
erning system are, mathematically speaking, extremely complicated. Thus, so that
further progress might be achieved, we now invoke the assumptions and arguments
of weakly-nonlinear acoustics. Under this paradigm, we seek to synthesize “small,
but finite-amplitude” (i.e., approximate) versions of our governing equations into
a single, weakly-nonlinear equation of motion, where by weakly-nonlinear we mean
a nonlinear PDE from which nonlinear terms of quadratic and higher order in the
Mach number have been neglected.

First, however, we must recast our system into a more useful form. To this
end, we observe that u = (u(x, t), 0, 0) implies ∇ × u = 0; therefore, u = φx,
where φ = φ(x, t) denotes the velocity potential. Next, we introduce the following
additional dimensionless quantities:

u� = u/V, φ� = φ/(LV ), e = c−1
p (η − η0), P = ℘/℘0,

q� = q/qmag, x� = x/L, t� = t(c0/L), (43)

where the positive constants L, V , and qmag denote a characteristic length, speed,
and value of |q|, respectively. Now fully non-dimensionalized, Eqs. (4) and (10)–(13)
can be written as

P = (1 + s)γ exp(γe), (44)

st + ε[φxsx + (1 + s)φxx] = 0, (45)

εγ(1 + s)∂x[φt + 1
2ε(φx)2] = −Px, (46)

K̃(1 + s)(1 + θ)(et + εφxex) = −κ̃qx, (47)

q + λ0(qt + εφxqx) = −K̃θx, (48)

respectively. Here, ε = V/c0 and λ0 = τ0c0/L denote the Mach and the Knudsen

numbers, respectively; K̃ = q−1
magK0ϑ0/L and κ̃ := c−1

0 κ/L denote the dimensionless
thermal conductivity and the dimensionless thermal diffusivity, respectively; all
diamond superscripts have been, and shall remain, suppressed; and for convenience
we have introduced the notation ∂ζ := ∂/∂ζ.

In the remainder of this section, we shall proceed under the assumptions of the
weakly-nonlinear approximation; specifically, that ε � 1, |s| = O(ε), |θ| = O(ε),
λ0 = O(ε), κ̃ = O(ε), and |e| = O(ε2). Additionally, we note for future reference
the fact that

s = −εφt +O(ε2), (49)

a result which is readily derived from Bernoulli’s theorem,

4.1. Bi-directional equation of motion: Derivation. As a first step, we ex-
pand Eq. (44), which we are free to do since |s| � 1 and |e| � 1 have been assumed,
to find that

P = 1 + γ[s+ 1
2 (γ − 1)s2 + e + · · · ]. (50)

Next, we replace P in Eq. (46) with the right-hand side of Eq. (50) and then
carry out the indicated differentiation with respect to x on the right-hand side
of the former. Now dividing both sides by 1 + s and then expanding (1 + s)−1

in a binomial series, recalling the weakly-nonlinear assumption |s| = O(ε), our
momentum equation becomes, after simplifying and neglecting terms of O(ε2),

∂x{φt + 1
2ε(φx)2 + ε−1[s+ 1

2 (γ − 2)s2 + e]} = 0. (51)
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Integrating now with respect to x and then applying ∂t to both sides, Eq. (51)
becomes

φtt + 1
2ε∂t(φx)2 + ε−1[1 + (γ − 2)s]st + ε−1et = 0, (52)

which after using Eq. (45) to eliminate st becomes, in turn,

φtt + 1
2ε∂t(φx)2 − [1 + (γ − 2)s][φxsx + (1 + s)φxx] = −ε−1et. (53)

Turning our attention now to Eqs. (47) and (48), we observe that both are used
in linearized form under the weakly-nonlinear paradigm; i.e., the (dimensionless)
balance law expressing the rate of (specific) entropy production reduces to [15, 29]

K̃et = −κ̃qx, (54)

which we note holds for sound fields far removed from solid boundaries, and the
constitutive relation for the (dimensionless) heat flux once again6 assumes the form

(1 + λ0∂t)q = −K̃θx. (55)

On eliminating q between the former and latter, our linearized entropy equation
becomes

(1 + λ0∂t)et = κ̃θxx, (56)

which we can immediately recast as

(1 + λ0∂t)et = −εκ̃(γ − 1)φtxx, (57)

via Eq. (49) and the approximation [9, p. 46]

θ ≈ −ε(γ − 1)φt. (58)

Returning to Eq. (53) and applying the relaxation operator (1 + λ0∂t), followed
by the use of Eq. (57) to eliminate et, our momentum equation becomes, after
rearranging terms and simplifying,

(1 + λ0∂t){φtt + 1
2ε∂t(φx)2 − [1 + (γ − 2)s][φxsx + (1 + s)φxx]}

= (Reθ)
−1φtxx. (59)

Here, Reθ, what we term the thermal Reynolds number, is given by

Reθ := [κ̃(γ − 1)]−1 = c0L/δθ, (60)

where δθ := κ(γ−1) denotes the inviscid special case of the diffusivity of sound [46].
Again making use of Eq. (49), but now to eliminate s and sx, Eq. (59) assumes the
form

(1 + λ0∂t){φtt − φxx + ε[∂t(φx)2 + (γ − 1)φtφxx + O(ε)]} = (Reθ)
−1φtxx. (61)

Finally, on applying (1 + λ0∂t) to each term on the left-hand side of Eq. (61),
and thereafter neglecting terms of O(ε2) and simplifying, we obtain the following
as our (bi-directional) weakly-nonlinear equation of motion:

λ0φttt + φtt − [1− 2ε(β − 1)φt]φxx − σφtxx + ε∂t(φx)2 = 0, (62)

a PDE which can also be expressed as

φtt − [1− 2ε(β − 1)φt]φxx − (Reθ)
−1φtxx + ε∂t(φx)2 = −λ0∂t(φtt − φxx). (63)

Here, for convenience, we have introduced β(> 1), known as the coefficient of non-
linearity [1, 29], which in the case of a perfect gas is given by β = (γ+ 1)/2, and we
have set σ := λ0 + (Reθ)

−1. It is noteworthy that the linearized version of Eq. (62)

6Note that Eq. (55) is just a dimensionless version of Eq. (16).
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is equivalent to models which have arisen in a number of acoustics-related fields;
see, e.g., Refs. [25, 31, 42, 46].

Remark 3. If we let λ0 → 0 (i.e., τ0 → 0), then it is a simple matter to show that
Eq. (63) reduces to

φtt − [1− 2ε(β − 1)φt]φxx − (Reθ)
−1φtxx + ε∂t(φx)2 = 0. (64)

This PDE, which of course is based on Fourier’s law, is the special case of the 1D
Blackstock–Lesser–Seebass–Crighton (BLSC) equation corresponding to an inviscid,
thermally conducting gas; see, e.g., Ref. [22] and those therein.

4.2. Traveling wave analysis. Confining our attention to only right-running wa-
ves, which we do without loss of generality since Eq. (62) is invariant under the
transformation x 7→ −x, we introduce the ansatzes u(x, t) = f(ξ) and φ(x, t) =
F (ξ), where ξ := x − ct is the wave variable and the constant c(> 0) represents
the speed of the traveling wave. Making these substitutions and then integrating
the resulting ODE with respect to ξ, subject to the asymptotic condition f → 0 as
ξ →∞, Eq. (62) is reduced to the quadratic Bernoulli equation

− c(c2λ0 − σ)f ′ + (c2 − 1)f − cεβf2 = 0, (65)

where a prime denotes d/dξ, and we note that f = F ′.
On imposing and enforcing the second of our asymptotic conditions, i.e., f → 1

as ξ → −∞, the speed of our traveling waveform is found to be identical to that
admitted by the BLSC equation (i.e., Eq. (64)), namely,

c = 1
2εβ +

√
1 + 1

4ε
2β2 , (66)

where we note that c > 1 follows immediately from the fact that

c = 1 +
1

2
εβ +

1

8
ε2β2 + · · · (ε� 1). (67)

Since c, as given in Eq. (66), is the positive root of c2 − 1 = εβc, Eq. (65) can be
further reduced to

− (c2λ0 − σ)f ′ + εβ(f − f2) = 0, (68)

which is easily integrated and yields the Taylor shock solution

f(ξ) = 1
2{1− tanh[2ξ/l(λ0)]} (λ0 < λ∗0). (69)

Here, l(> 0), the shock thickness [38, p. 591], and λ∗0, a critical value of λ0, are
given by

l(λ0) =

(
1− λ0

λ∗0

)
`BLSC and λ∗0 :=

1

cεβReθ
, (70)

where `BLSC = 4(εβReθ)
−1 denotes the shock thickness corresponding to Eq. (64)

and the restriction λ0 < λ∗0 has been imposed to ensure that f satisfies the imposed
asymptotic conditions.

Remark 4. It is noteworthy that the requirement 0 < l < `BLSC is equivalent to

0 < cλ0 <
1
4`BLSC. (71)
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4.3. Unidirectional approximation: The hyperbolic Burgers equation.
Let us now divide Eq. (62) by [1 − 2ε(β − 1)φt], which can never be zero, ex-
pand each occurrence of the reciprocal of this quantity in a binomial series, based
on ε � 1, and then, as before, neglect all terms of O(ε2). Our equation of motion
then becomes, after simplifying,

λ0φttt + φtt − φxx − σφtxx + ε∂t[(φx)2 + (β − 1)(φt)
2] = 0. (72)

In the limit λ0 → 0, this PDE reduces to the special case of Kuznetsov’s equation
corresponding to an inviscid, thermally conducting fluid; again, see Ref. [22] and
those therein.

Since we are only concerned with right-running waves (i.e., c > 0), we can
replace7, based on the approximation φx ' −φt, the difference φtt − φxx with
2∂t(∂t + ∂x)φ, and in doing so Eq. (72) becomes

λ0φttt + 2∂t(∂t + ∂x)φ− σφtxx + ε∂t[(φx)2 + (β − 1)(φt)
2] = 0. (73)

If we now replace the “small” term (φt)
2 with (φx)2, again based on the approxi-

mation φx ' −φt, integrate the result with respect to t, and then differentiate with
respect to x, Eq. (73) is reduced to

1
2 (λ0utt − σuxx) + ut + (1 + εβu)ux = 0, (74)

where we have also made use of the relation u = φx. Equation (74), which has
come to be known as the hyperbolic Burgers equation (HBE), arises in a number
of diverse fields, the earliest and best known of which being traffic flow modeling
under kinematic-wave theory; see, e.g., Refs. [11, 21] and the those therein.

It is fortunate, indeed, that the findings presented by Christov and Jordan [11],
all of which were derived in the traffic flow context, can be directly applied to the
present study. This is readily accomplished by first recasting Eq. (74) as(

u
j

)
t

+

(
0 1
a2

0 0

)(
u
j

)
x

=
2

λ0

(
0

u(1 + 1
2εβu)− j

)
, (75)

which we note is a strictly hyperbolic, semilinear system with characteristics defined
by dx/dt = ±a0 (see, e.g., Dafermos [16]). Then, use is made of the fact that the
dependent variables and parameters of this system are related to their kinematic
counterparts in Ref. [11, Eq. (4)] as follows:

ρ 7→ −u, q 7→ −j; τ0 = 1
2λ0, ν = 1

2σ, ρs =
2

εβ
, vm = 1, c0 = a0. (76)

Here, the kinematic quantities, which are those appearing on the left-hand side of
each replacement listed in Eq. (76), are defined in Ref. [11]; j has been introduced

to play the role of a flux; a0 =
√
σ/λ0 denotes the characteristic speed; and to

simplify the analysis, λ0 > 0 (i.e., τ0 > 0) is henceforth assumed.
In Figure 2 we compare v0, the dimensional version of a0, where the former is

given by

v0 = c0

√
1 + c−2

0 κ(γ − 1)/τ0, (77)

with v1,2, the acoustic and thermal wave speeds, respectively, from section 3, for
the case of air under normal conditions. The curves shown clearly indicate that v0

is the weakly-nonlinear approximation to the speed of the thermal wave, not the
acoustic one, and that v1 → b (from below) as τ0 → 0, a consequence of the fact
that v1 assumes its maximum value (i.e., b) under Fourier’s law. Figure 2 also makes

7See, e.g., Crighton’s [14, p. 16] reduction of Eq. (64) to Burgers equation.
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clear that for τ0 & 773 picosec, where we recall that τ0 ≈ 773 picosec is the value
computed in the case of air using Ref. [19, Eq. (18b)], the v0 and v2 curves show
very good/excellent agreement, with both tending to c0 (from above) as τ0 →∞.

Figure 2. Wave speed profiles as functions of τ0 in the case of air

at 1 atm and 300 K, for which γ = 1.4, κ ≈ 2.22 × 10−5 m2/sec [38],

b ≈ 293.4 m/sec, and c0 ≈ 347.2 m/sec; broken: v0 vs. τ0; bold-solid: v1
vs. τ0; and thin-solid: v2 vs. τ0.

Remark 5. In studies of second-sound in solids, and applications based on the
models thereof, one often encounters PDEs quite similar to Eq. (74). For example,
in her work on second-sound in rigid conductors with memory, Carillo [3, 4] has
derived and analyzed the nonlinear wave equation

utt = k0(uxx + 2uux), (78)

which Jordan [21] has shown can also be derived under what he terms “inertial-
Type-II” theory, while Straughan [43] has obtained acceleration results for the model

utt + αut = Dαuxx + αkf(u), (79)

which is a hyperbolic generalization of the class of PDEs known as (1D) reaction-
diffusion equations. In Eqs. (78) and (79), k0(> 0), D(> 0), α(> 0), and k(≥ 0)
are constants.

4.4. Singular surface results: Thermoacoustic shocks.

4.4.1. Shocks in the velocity field. We now turn our attention to understanding the
impact of thermal relaxation on thermoacoustic shocks; in particular, the evolution
of the shock amplitude, which in the case of the velocity field is once again denoted
by [[u]], across the (right-running) shock-front x = Σ(t). Here, Σ(t) = a0t+x0, where
the constant x0 denotes the initial location of Σ on the x-axis; recall section 3.1.
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Using the machinery of singular surface theory [34, 36, 45], it is readily established
that S(t), where we have set S(t) = 1

2εβ[[u]] for convenience, like its kinematic
counterpart S(t) in Ref. [11], satisfies a Bernoulli equation, specifically,

a0λ0
DS
Dt

= −α•S + S2, (80)

which integrates to

S(t) =


α•

1−
(

1− α•

S(0)

)
exp

[(
α•

a0λ0

)
t
] , α• 6= 0,

a0λ0S(0)

a0λ0 − S(0)t
, α• = 0,

S(0) 6= 0. (81)

Here, D/Dt, the 1D displacement derivative, gives the time-rate-of-change measured
by an observer traveling with Σ, and α•, the critical shock amplitude, is given by

α• = a0 − (1 + εβu+) = −

[
(1 + εβu+)−

√
1 +

1

λ0

(
1

Reθ

)]
, (82)

where u+, the value of u immediately ahead of Σ, has been assumed constant.
At this stage it is instructive to briefly shift our analysis to the phase plane and

examine the stability of the (two) equilibria of Eq. (80), which we denote using a

superposed hat (i.e., Ŝ). Omitting the details, but referring the reader to any of
the many excellent texts which treat qualitative methods for ODEs, the following
can be established without difficulty:

(i) If u+ > 0 and λ0 < λ•0, then α• > 0; therefore Ŝ = {0, α•} are stable and
unstable, respectively.

(ii) If u+ > 0 and λ0 = λ•0, then α• = 0; therefore the equilibria has coalesced at

Ŝ = 0, which is now both a double zero of the quadratic on the right-hand
side of Eq. (80) and a left-semi-stable bifurcation point.

(iii) If u+ > 0 and λ0 > λ•0, then α• < 0; therefore Ŝ = {0, α•} are unstable and
stable, respectively.

(iv) If u+ ≤ 0, then α• > 0; therefore Ŝ = {0, α•} are stable and unstable,
respectively.

Here, the bifurcation value of Eq. (80) defines the critical λ0-value

λ•0 := [2εβu+(1 + 1
2εβu

+)Reθ]
−1, (83)

i.e., α• = 0 for λ0 = λ•0, where we observe that a necessary condition for λ•0 to be
physically well-defined is u+ > 0.

Regarding the evolution of S(t), Eq. (81) indicates that, from the mathematical
standpoint, this can occur in any one of the following nine ways:

(I) If α• > 0 and S(0) < 0, then S(t)→ 0 (from below) as t→∞.
(II) If α• > 0 and S(0) ∈ (0, α•), then S(t)→ 0 (from above) as t→∞.

(III) If α• > 0 and S(0) > α•, then S(t)→∞ as t→ t∞.
(IV) If α• = 0 and S(0) < 0, then S(t)→ 0 (from below) as t→∞.
(V) If α• = 0 and S(0) > 0, then S(t)→∞ as t→ t∞.

(VI) If α• < 0 and S(0) < α•, then S(t)→ α• (from below) as t→∞.
(VII) If α• < 0 and S(0) ∈ (α•, 0), then S(t)→ α• (from above) as t→∞.
(VIII) If α• < 0 and S(0) > 0, then S(t)→∞ as t→ t∞.
(IX) If α• 6= 0 and S(0) = α•, then S(t) = α• for all t ≥ 0.
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Here, t∞, the time at which finite-time blow-up occurs, is given by

t∞ = a0λ0

(α•)−1 ln

(
S(0)

S(0)− α•

)
, α• 6= 0,

1/S(0), α• = 0,
(84)

where we observe that t∞ > 0 holds only under Cases (III), (V), and (VIII), and
we recall the assumption S(0) 6= 0.

4.4.2. Shocks in the density and temperature fields. If, instead, we had replaced
(φx)2 with (φt)

2, again based on φx ' −φt, followed by use of the approximation
s ≈ −εφt (recall Eq. (49)), then Eq. (73) would have reduced to

1
2 (λ0stt − σsxx) + sx + st = 1

2β∂t(s
2). (85)

While certainly not intractable, this PDE can be put into an even more useful form
by replacing the operator ∂t on the right-hand side with −∂x; the result of this
approximation is

1
2 (λ0stt − σsxx) + st + (1 + βs)sx = 0, (86)

which of course is the HBE expressed in terms of the condensation.
With Eq. (86) in hand, it is a relatively simple matter to show that, in terms of

the condensation/density field, the evolution of the shock amplitude is, just as in
the case of the velocity field, described by the solutions of a Bernoulli equation. On
setting R(t) := 1

2β[[s]], we have

R(t) =


α?

1−
(

1− α?

R(0)

)
exp

[(
α?

a0λ0

)
t
] , α? 6= 0,

a0λ0R(0)

a0λ0 −R(0)t
, α? = 0,

R(0) 6= 0. (87)

Here, α?, the critical shock amplitude, is given by

α? = a0 − (1 + βs+) = −

[
(1 + βs+)−

√
1 +

1

λ0

(
1

Reθ

)]
; (88)

s+, the value of s immediately ahead of Σ, is assumed constant; and we observe
that α? = 0, the bifurcation value in this case, defines the second critical λ0-value

λ?0 := [2βs+(1 + 1
2βs

+)Reθ]
−1, (89)

where a necessary condition for λ?0 to be physically well-defined is s+ > 0.
Lastly, to determine [[θ]], we simply take jumps of Eq. (58) and then make use of

Eq. (87), recalling Eq. (49). After expressing γ in terms of β, it can be shown that

[[θ]] ≈ 2(β − 1)[[s]] = 4(1− β−1)R(t). (90)

Remark 6. It would be of interest to perform a detailed comparison of the ther-
moviscous shock results obtained by Morro [34], who employed a “hidden variable”
fluid model, with those derived here under the weakly-nonlinear approximation.
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5. Closure.

• For τ0 > 0, the solution profiles of section 3 all admit two propagating shock-
fronts, the slower one acoustic with speed v1, the other thermal with speed v2;
see the example in Figure 1. In the limit τ0 → 0, however, these profiles admit
only an acoustic wavefront, which can be either a shock or an acceleration
wave, depending on the variable in question, that propagates with speed b.

• In applying the weakly-nonlinear approximation to System (44)–(48), the re-
sulting equation of motion describes only the thermal wave, i.e., the wave with
(dimensional) characteristic speed v0, where v0 is such that (see Figure 2)

0 < v1 < b < c0 < v0 < v2 <∞ (τ0 > 0); (91)

compare these values with those derived by Straughan [45] for the speed of
acceleration waves in Cattaneo–Christov gases.

• The traveling wave inequality 0 < l < `BLSC carries with it the following
physical implication: Introducing thermal relaxation via the MC law miti-
gates, with respect to classical (i.e., Fourier-based) gas dynamics theory, the
effects of thermally-induced dissipation in perfect gases.

• The Taylor shock described by Eq. (69) can “shock-up” in two different ways,
namely, in the limit Reθ →∞, as is also true in the case of the BLSC equation,
and in the limit λ0 → λ∗0 (from below), with the value of δθ remaining fixed.

• Under the HBE version of our equation of motion, a necessary mathematical
condition for the shock amplitude S(t) to exhibit a bifurcation is u+ > 0.

• The three cases of finite-time blow-up detailed in section 4.4.1 reflect a break-
down of our mathematical model (i.e., the HBE); specifically, in Case (III)
the initial data is evidently too large while in Cases (V) and (VIII) the value
of λ0 is equal to or greater than, respectively, that of λ•0 (see Eq. (83)).

• To examine the coupling between, and the structure of, 1D thermal and acous-
tic waves in a Cattaneo–Christov gas under the weakly-nonlinear approxima-
tion, one would have to, based on the results of section 3, begin by re-deriving
the following system under the assumption that, instead of Fourier’s law, the
heat flux obeys Eq. (55):

ε{γφtt + 1
2ε(γ + 1)∂t(φx)2 − [1− ε(γ − 1)φt]φxx} = −θt, (92)

θt + εφxθx − γκ̃θxx = −ε(γ − 1)[1− ε(γ − 1)φt]φxx. (93)

• Another possible follow-on study involves setting aside the weakly-nonlinear
approximation and performing an “exact” traveling wave analysis based on
the (1D) system in section 2, thereby generalizing that of Christov et al. [12]
to Cattaneo–Christov gases.
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[35] I. Müller, Zum Paradoxon der Wärmeleitungstheorie, Z. Phys., 198 (1967), 329–344.
[36] I. Müller and T. Ruggeri, Extended Thermodynamics, Springer Tracts in Natural Philosophy,

Vol. 37, Springer, New York, NY, 1993.

[37] V. Peshkov, “Second sound” in helium II, J. Phys., (USSR) 8 (1944), 381.
[38] A. D. Pierce, Acoustics: An Introduction to its Physical Principles and Applications, Acous-

tical Society of America, Woodbury, NY, 1989.

[39] T. Ruggeri, Symmetric-hyperbolic system of conservative equations for a viscous heat con-
ducting fluid, Acta Mech., 47 (1983), 167–183.

[40] T. Ruggeri, Galilean invariance and entropy principle for systems of balance laws, Cont. Mech.

Thermodyn, 1 (1989), 3–20.
[41] J. Serrin, Mathematical principles of classical fluid mechanics, in Handbuch der Physik, (ed.
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